260 research outputs found

    Local Edge Betweenness based Label Propagation for Community Detection in Complex Networks

    Full text link
    Nowadays, identification and detection community structures in complex networks is an important factor in extracting useful information from networks. Label propagation algorithm with near linear-time complexity is one of the most popular methods for detecting community structures, yet its uncertainty and randomness is a defective factor. Merging LPA with other community detection metrics would improve its accuracy and reduce instability of LPA. Considering this point, in this paper we tried to use edge betweenness centrality to improve LPA performance. On the other hand, calculating edge betweenness centrality is expensive, so as an alternative metric, we try to use local edge betweenness and present LPA-LEB (Label Propagation Algorithm Local Edge Betweenness). Experimental results on both real-world and benchmark networks show that LPA-LEB possesses higher accuracy and stability than LPA when detecting community structures in networks.Comment: 6 page

    Combining Solution Reuse and Bound Tightening for Efficient Analysis of Evolving Systems

    Get PDF
    Software engineers have long employed formal verification to ensure the safety and validity of their system designs. As the system changes—often via predictable, domain-specific operations—their models must also change, requiring system designers to repeatedly execute the same formal verification on similar system models. State-of-the-art formal verification techniques can be expensive at scale, the cost of which is multiplied by repeated analysis. This paper presents a novel analysis technique—implemented in a tool called SoRBoT—which can automatically determine domain-specific optimizations that can dramatically reduce the cost of repeatedly analyzing evolving systems. Different from all prior approaches, which focus on either tightening the bounds for analysis or reusing all or part of prior solutions, SoRBoT’s automated derivation of domain-specific optimizations combines the benefits of both solution reuse and bound tightening while avoiding the main pitfalls of each. We experimentally evaluate SoRBoT against state-of-the-art techniques for verifying evolving specifications, demonstrating that SoRBoT substantially exceeds the run time performance of those state-of-the-art techniques while introducing only a negligible overhead, in contrast to the expensive additional computations required by the state-of-the-art verification techniques

    Parasol: Efficient Parallel Synthesis of Large Model Spaces

    Get PDF
    Formal analysis is an invaluable tool for software engineers, yet state-of-the-art formal analysis techniques suffer from well-known limitations in terms of scalability. In particular, some software design domains—such as tradeoff analysis and security analysis—require systematic exploration of potentially huge model spaces, which further exacerbates the problem. Despite this present and urgent challenge, few techniques exist to support the systematic exploration of large model spaces. This paper introduces Parasol, an approach and accompanying tool suite, to improve the scalability of large-scale formal model space exploration. Parasol presents a novel parallel model space synthesis approach, backed with unsupervised learning to automatically derive domain knowledge, guiding a balanced partitioning of the model space. This allows Parasol to synthesize the models in each partition in parallel, significantly reducing synthesis time and making large-scale systematic model space exploration for real-world systems more tractable. Our empirical results corroborate that Parasol substantially reduces (by 460% on average) the time required for model space synthesis, compared to state-of-the-art model space synthesis techniques relying on both incremental and parallel constraint solving technologies as well as competing, non-learning-based partitioning methods
    corecore